January 31, 2011

To:

Susan Hackwood, Ph.D. Executive Director California Council on Science and Technology

c/o: Lora Lee Martin, Director Strategic Policy Initiatives and Government Affairs California Council on Science and Technology

Re: CCST Smart Meter Report, issued January 11, 2011

Dear Dr. Hackwood and Ms. Martin,

This letter is meant to comment on CCST's Smart Meter Report, the conclusions with which we disagree. We also think the report lacks the scientific expertise and details to warrant serious consideration by those knowledgeable in this area of inquiry. The report reflects basic flaws in review perspective as well as simple factual errors that should never appear in a report such as this.

The basic question of whether the FCC's guidelines for radiofrequency radiation (RFR) exposure are met by smart meters is fundamentally beside the point regarding the task at hand required from CCST. Those guidelines in their current form are not sufficiently protective of human health, and likely never were. The present guidelines are obsolete, in need of substantive revision in both content and focus, and should be updated using far more recent research data. CCST had an opportunity to delve deeper into a potentially looming public health problem regarding the smart meter/grid buildout but unfortunately chose otherwise.

The FCC guidelines for the specific absorption rate (SAR) are based on narrow data from <u>one</u> set of experiments carried out in the 1980's (1, 2) which showed behavioral disruption in animals after exposure to RFR at a whole body specific absorption rate (SAR) of 4 W/kg. These studies have not been independently replicated yet are enshrined in the standards. Many other experiments since then have shown behavioral effects in animals at a SAR lower than 4 W/kg but no changes to the guidelines have been made (3).

It is misleading to discuss the guidelines based on thermal v. non-thermal effects. It is very difficult to scientifically differentiate between RFR-induced thermal and nonthermal biological effects. An increase in temperature does not necessarily, or automatically, imply that an effect being observed is thermal in nature only. Guidelines should be based on the exposure levels (SAR or power density) at which biological effects have been observed. Examples of factual errors in the report include:

- In Fig 5, the vertical bar at around 900 MHz gives the power density of the maximum exposure from smart meters at 5%, 50%, 100% duty cycles, i.e., when the meter is on 5%, 50% and 100% of the time. The power density (which is the unit of the vertical y-axis) is shown to increase with increase in the duty cycle. This is inaccurate. Power density is a measure of the strength of the RFR field at a certain time point and it should not change with the time of measurement. An analogy would be when a car runs at a constant speed of 50 mph, the speed remains the same no matter how long one measures it. In that analogy, what Figure 5 says is that a car would be running at 50 mph when measured for a duration of 5 minutes; but at 500 mph when measured for 50 mph when measured for 500 mph when mea
- This also applies to Figure 7 with the statement 'smart meter figures represent 100% duty cycle' (i.e., always on) as a hypothetical maximum use case' simply does not make sense at all.

In a recent paper that we published in *Environmental Reviews* (4), one of the publications of Canada's National Research Council Press, we included a chart of 59 peer-reviewed studies showing various biological effects at low intensity RFR exposures (See attached chart below). Some of the works cited certainly apply to even the lowest intermittent exposures associated with smart meters. Smart meters therefore cannot be considered benign, despite adherence to FCC guidelines. The listed exposure levels at which biological/health effects have been observed are much lower than the FCC's 4 W/kg, and actually include levels that one would encounter in modern urban environments today.

Furthermore, exposure to smart meter RFR is chronic and unavoidable. There is not much data on the biological effects of chronic RFR exposure, although some does exist. There are research data showing that the effects of chronic low level exposures are different than those of acute short-term exposure such as the FCC guidelines. In fact, another set of similar experiments (5, 6) was carried out also in the 1980's to study the effects of repeated RFR exposures. The researchers concluded:

"...the threshold for behavioral and physiological effects of chronic (*long-term*) RFR exposure in the rat occurs between 0.5 mW/cm² (0.14 W/kg) and 2.5 mW/cm² (0.7 W/kg)."

It appears that chronic exposure sensitized the animals to RFR. Thus, it is definitely insufficient to apply a guideline based on acute exposure to a chronic exposure situation such as would be experienced with smart grid/meter technology.

Another important question is whether RFR biological effects are cumulative? This applies to the discussion of smart meter duty cycles in the CCST report. There are some studies indicating that RFR effects can accumulate with repeated exposures (3). This is an important consideration in light of so many wireless devices in our midst today.

No agency takes cumulative exposures into consideration. Each device or new technology is considered a stand-alone. Most low-level RFR technologies are categorically excluded from FCC licensing or review if they meet certain exposure thresholds. Therefore, today's true exposures are unknown. What is certain, however, is that smart grid/meters will add a whole new layer of involuntary exposures to an ever-increasing background level of RFR.

An important missed opportunity in the report was a thorough discussion of the RFR emissions from 'access points' in the larger grid network. These points have significantly higher duty cycles in order to co-ordinate the signals from thousands of meters. In the very least, CCST should call for a cessation of the smart meter buildout until the emission levels from access points are known, setbacks are recommended from nearby residences, and a better assessment of cumulative exposures from meters, access points, and wireless components placed on or in appliances themselves can be determined. We recommend that CCST also advise the California legislature that more extensive assessment is needed regarding this technology before the state proceeds further.

One final comment... Neither California nor CCST is constrained by the preemptive language of the Telecommunications Act of 1996 regarding cell tower placement, which stipulates that municipalities/states cannot take the "environmental effects of radiofrequency radiation" into consideration "to the extent" that such facilities comply with the FCC guidelines for RFR emissions. The state and CCST are actually in a position to <u>arbitrate</u> the science regarding the safety of smart grids/meters and to make recommendations beyond the FCC guidelines. Unfortunately, CCST failed to step up in a meaningful way.

We hope you will go back to the drawing board, broaden your scope of inquiry, and extend your search into the literature of low-level effects. There is ample evidence for a more cautionary approach.

Respectfully Submitted,

Henry Lai, Ph.D. Department of Bioengineering, University of Washington Seattle, WA 98195

B. Blake Levitt355 Lake Rd.New Preston, CT 06777

References:

1. de Lorge, J., and Ezell, C.S. 1980. Observing-responses of rats exposed to 1.28- and 5.62-GHz microwaves. Bioelectromagnetics, 1(2): 183–198, 1980.

- 2. de Lorge, J.O. 1984. Operant behavior and colonic temperature of Macaca mulatta exposed to radiofrequency fields at and above resonant frequencies. Bioelectromagnetics, 5(2): 233–246, 1984.
- Lai, H. Biological effects of radiofrequency radiation from wireless transmission towers. In "*Cell Towers: Wireless Convenience? Or Environmental Hazard?*" Levitt, B.B. (ed.), New Century Publishing, East Canaan, CT, 2001, pp. 65-74, 2001.
- Levitt, B.B., Lai, H. Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ. Rev. 18: 369– 395, 2010 doi:10.1139/A10-018 NRC Research
- D'Andrea, J.A., DeWitt, J.R., Emmerson, R.Y., Bailey, C., Stensaas, S., and Gandhi, O. P., Intermittent exposure of rat to 2450-MHz microwaves at 2.5 mW/cm²: behavioral and physiological effects, Bioelectromagnetics 7:315-328, 1986.
- D'Andrea, J.A., DeWitt, J.R., Gandhi, O. P., Stensaas, S., Lords, J.L., and Nielson, H.C., Behavioral and physiological effects of chronic 2450-MHz microwave irradiation of the rat at 0.5 mW/cm², Bioelectromagnetics 7:45-56, 1986.

Table I. A list of studies reporting biological effects at low intensities of RFR. These papers gave either SAR (W/kg) or power density (μ W/cm²) of exposure.

		SAR	Power	Effects reported
		(W/kg)	density	
		_	$(\mu W/cm^2)$	
Belyaev et al.	915 MHz, GSM	0.037		Genetic changes in human white blood cells
(2005) (in vitro)	24 & 48 hr			
Belyaev et al.	915 MHz, 1947	0.037		DNA repair mechanism in human white blood
(2009) (in vitro)	MHz			cells
	GSM, UMTS			
	24 & 72 hr			
Blackman et al.	50 MHz, AM at	0.0014		Calcium in forebrain of chickens
(1980) (in vitro)	16 Hz			
Boscol et al.	500 KHz-3 GHz,		0.5	Immunological system in women
(2001) (in vivo)	TV broadcast			
(human whole				
body)				
Campisi et al.	900 MHz, CW or		26	DNA damage in human glial cells
(2010) (in vitro)	50-Hz AM,			
	14 days, 5, 10, 20			
	min per day,			
	CW- no effect			
Capri et al.	900 MHz, GSM	0.07		A slight decrease in cell proliferation when
(2004) (in vitro)	1 hr/day, 3 days			human immune cells were stimulated with
				mitogen and a slight increase in the number of
				cells with altered distribution of
				phosphatidylserine across the membrane.
Chiang et al.	People lived		10	People lived and worked near AM radio
(1989) (in vivo)	close to AM			antennae and radar installations showed deficits
(human whole	radio and radar			in psychological and short-term memory tests.
body)	installations for			
	more than one			
	year	0.017		
De Pomerai et al.	I GHz	0.015		Protein damages
(2003) (in vitro)	24 & 48 hr	0.000		
D'Inzeo et al.	10.75 GHz CW	0.008		Operation of acetylcholine-related ion-channels
(1988) (in vitro)	30-120 sec			in cells. These channels play important roles in
		0.05		physiological and behavioral functions.
Dutta et al.	915 MHz,	0.05		Increase in calcium efflux in brain cancer cells.
(1984) (in vitro)	sinusoidal AM at			
	16 Hz	0.007		
Dutta et al.	147 MHz,	0.005		Increase in calcium efflux in brain cancer cells.

(1989) (in vitro)	sinusoidal AM at			
	16 Hz			
	30 min			
Fesenko et al.	From 8.15 - 18		1	Change in immunological functions.
(1999) (in vivo)	GHz			
(mouse-	5 hr to 7 days			
wavelength in	direction of			
mm range)	response			
67	depended on			
	exposure			
	duration			
Forgacs et al.	1800 MHz.	0.018		Increase in serum testosterone.
(2006) (in vivo)	GSM- 217 Hz			
(mouse whole	pulses 576 us			
body)	pulse width			
	2hr/day, 10 days			
Guler et al.	1800 MHz AM		52	Oxidative lipid and DNA damages in the brain
(2010) (In vivo)	at 217 Hz. 15			of pregnant rabbits
(rabbit whole	min/day, 7 days			I B a a a a a
(lucell hiller				
Hiollund et al.	Military radars		10	Sperm counts of Danish military personnel.
(1997) (in vivo)	,		-	who operated mobile ground-to-air missile units
(human partial or				that use several RFR emitting radar systems.
whole body)				were significantly lower compared to
				references.
Ivaschuk et al.	836.55 MHz,	0.026		A gene related to cancer.
(1999) (in vitro)	TDMA			
	20 min			
Jech et al. (2001)	900 MHz, GSM-	0.06		Improved cognitive functions.
(in vivo) (human	217 Hz pulses,			
partial body	577 us pulse			
exposure- not	width: 45 min:			
included)	narcoleptic			
,	patients			
Kesari and	50 GHz; 2hr/day,	0.0008		Double strand DNA breaks observed in brain
Behari (2009a)	45 days			cells
(in vivo) (rat				
whole body)				
Kesari and	50 GHz; 2hr/day,	0.0008		Reproductive system of male rats
Behari (2009b)	45 days			
(in vivo) (rat				
whole body)				
Kesari et al.	2450 MHz, 50-	0.11		DNA double strand breaks in brain cells.
(2010) (in vivo)	Hz modulation. 2			
(rat whole body)	h/day, 35 days			
Vuyaa at al	960 MHz GSM	0.0021		Increased stress protein in human epithelial

(2001) (in vitro)	20 min			amnion cells.
Lebedeva et al.	902.4 MHz,		60	Brain wave activation.
(2000) (in vivo)	GSM			
(human partial	20 min			
body)				
Lerchl et al.	383 MHz	0.08		Metabolic changes.
(2008) (in vivo)	(TETRA), 900			
(hamster whole	and 1800 MHz			
body)	(GSM)			
	24 hr/day, 60			
	days			
Magras and	'Antenna park'-		0.168	Decrease in reproductive function.
Xenos (1999)	TV and FM-			-
(in vivo) (mouse	radio,			
whole body)	Exposure over			
	several			
	generations			
Makova et al.	915 and 905	0.037		Chromatin conformation in human white blood
(2005) (in vitro)	MHz, GSM			cells.
	1 hr			
Mann et al.	900 MHz GSM		20	A transient increase in blood cortisol.
(1998) (in vivo)	pulse-modulated			
(human whole	at 217 Hz, 577 µs			
body)	width, 8 hr			
Marinelli et al.	900 MHz CW	0.0035		Cell's self-defense responses triggered by DNA
(2004) (in vitro)	2 - 48 hr			damage.
Navakatikian and	2450 MHz CW	0.0027		Behavioral and endocrine changes, and
Tomashevskaya	and 3000 MHz			decreases in blood concentrations of
(1994) (in vivo)	pulse-modulated			testosterone and insulin.
(rat whole body)	2 μs pulses at			
	400 Hz			
	Single (0.5-12hr)			
	or repeated (15-			
	60 days, 7-12			
	hr/day) exppsure,			
	CW-no effect			
Nittby et al.	900 MHz GSM	0.0006		Reduced memory functions.
(2007) (in vivo)	2hr/wk, 55wk			
(rat whole body)				
Novoselova et al.	From 8.15 -18		1	Functions of the immune system.
(1999) (in vivo)	GHz, 1 sec			
(mouse whole	sweep time-16			
body-	ms reverse,			
wavelength in	5 hr			
mm range)				
Novoselova et al.	From 8.15 -18		1	Decreased tumor growth rate and enhanced

(2004) (in vivo)	GHz, 1 sec			survival.
(mouse whole	sweep time-16			
body-	ms reverse,			
wavelength in	1. 5 hr/day, 30			
mm range)	days			
Pavicic et al.	864 and 935	0.08		Growth affected in Chinese hamster V79 cells.
(2008) (in vitro)	MHz, CW, 1-3			
	hrs			
Panagopoulos et	GSM 900 and		1 - 10	Reproductive capacity and induced cell death
al (2010) (in	1800		1 10	Reproductive cupacity and madeed cert death.
vivo) (fly whole	$6 \min/day 5 days$			
body)	o mini, aug, o augo			
Panagopoulos	GSM 900 and		10	'Window' effect of GSM radiation on
and Margaritis	1800		10	reproductive capacity and cell death
(2010a) (in vivo)	$6 \min/day 5 days$			reproductive capacity and con deadi.
(fly whole body)	o min duy, o duyo			
Panagopoulos	GSM 900 and		10	Reproductive capacity of the fly decreased
and Margaritis	1800		10	linearly with increased duration of exposure
(2010b) (in vivo)	1-21 min/day 5			initiarity with increased adjustor of exposure.
(fly whole body)	davs			
Pérez-Casteión et	9 6 GHz 90%	0.0004		Increased proliferation rate in human
al (2009) (in	AM	0.0001		astrocytoma cancer cells
vitro)	24 hrs			
Perssson et al	915 MHz-CW	0.0004		Increase in permeability of the blood-brain
(1997) (in vivo)	and pulse-	0.0001		harrier
(mouse whole	modulated (217-			
(induse whole body)	Hz $0.57 \text{ ms} \cdot 50$ -			
body)	H_{Z} , 6.57 ms, 50			
	960 min [•]			
	CW more potent			
Phillips et al	813 5625 MHz	0.0024		DNA damage in human leukemia cells
(1998) (in vitro)	(iDEN): 836 55	0.0021		Divit dunidge in naman teakenna cons.
	MH_{Z} (TDMA)			
	2 hr and 21 hr			
Polonga-Moraru	2 45 GHz		15	Change in membrane of cells in the retina
et al. (2002) (in	1hr		10	change in memorale of cons in the retina.
vitro)				
Pyrpasopoulou et	9.4 GHz GSM	0.0005		Exposure during early gestation affected kidney
al (2004) (in	(50 Hz pulses 20)	0.0002		development
vivo) (rat whole	us nulse length)			
hody)	1-7 days			
((u))	nostcoitum			
Roux et al	900 MH ₇		7	Gene expression and energy metabolism
(2008a) (in vivo)			/	Sene expression and energy metabolism.
(tomato whole				
Polonga-Moraru et al. (2002) (in vitro) Pyrpasopoulou et al. (2004) (in vivo) (rat whole body) Roux et al. (2008a) (in vivo) (tomato whole	2 hr and 21 hr 2.45 GHz 1hr 9.4 GHz GSM (50 Hz pulses, 20 µs pulse length) 1-7 days postcoitum 900 MHz	0.0005	15 7	Change in membrane of cells in the retina. Exposure during early gestation affected kidney development. Gene expression and energy metabolism.

Roux et al. (2008b) (in vivo)	900 MHz		7	Energy metabolism.
(plant whole body)				
Salford et al.	915 MHz GSM	0.02		Nerve cell damage in brain.
(2003) (in vivo)	2 hr	0.02		
(rat whole body)				
Sarimov et al.	895-915 MHz	0.0054		Human lymphocyte chromatin affected similar
(2004) (in vitro)	GSM			to stress response.
	30 min			
Schwartz et al.	240 MHz-CW	0.00015		Calcium movement in the heart.
(1990) (in vitro)	and sinusoidal			
	modulation at 0.5			
	and 16 Hz,			
	30 min,			
	observed at 16			
	Hz modulation			
Schwarz et al	1950 MHz	0.05		Genes in human fibroblasts
(2008) (in vitro)	UMTS	0.05		Cones in numun norobiusts.
(2000) (111 (1110))	24 hr			
Somosy et al.	2.45 GHz, CW	0.024		Molecular and structural changes in cells of
(1991) (in vitro)	and 16 Hz			mouse embryos.
	square-			
	modulation,			
	modulated field			
	more potent than			
<u> </u>	CW	0.0050		
Stagg et al.	830.33 MHZ	0.0059		Glioma cells showed significant increases in
(1997) (III VIIIO)	TDMA duty			indication of an increase in cell division
	24 hr			indication of an increase in cen division.
Stankiewicz et	900 MHz GSM	0.024		Immune activities of human white blood cells
al. (2006) (in	217 Hz pulses-	0.021		initiale derivities of human white blood cens.
vitro)	.577 ms width			
,	15 min			
Tattersall et al.	700 MHz CW, 5-	0.0016		Function of the hippocampus.
(2001) (in vitro)	15 min			
Velizarov et al.	960 MHz GSM	0.000021		Decrease in proliferation of human epithelial
(1999) (in vitro)	217 Hz square-			amnion cells.
	pulse, duty cycle			
	12%			
Verset 1	30 min	0.015		Emplique of the i
veyret et al.	9.4 GHz 1 µs	0.015		Functions of the immune system.
(1991) (11 V1VO)	pulses at 1000			
(mouse whole	pps, also with or			

body)	without sinusoidal AM between 14 and 41 MHz, response only with AM modulation, direction of			
	response			
	frequency			
Vian et al.	900 MHz		7	Stress gene expression.
(2006) (in vivo)				
plant				
Wolke et al.	900, 1300, 1800	0.001		Calcium concentration in heart muscle cells of
(1996) (in vitro)	MHz, square-			guinea pig.
	wave modulated			
	at 217 Hz;			
	Also 900 MHz			
	with CW, 16 Hz,			
	50 Hz and 30			
	KHz modulations			
Yurekli et al.	945 MHz GSM,	0.0113		Free radical chemistry.
(2006) (in vivo)	217 Hz pulse-			
(rat whole body)	modulation			
	7 hr/day, 8 days			